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A general method is devised for the automatic generation of Feynman
diagrams in gauge (and other) field theories. The performance of an
tmplemented computer program is also described, as well as a number
of tests that rely on complementary enumeration techniques. © 1983
Academic Press. Inc.

1. INTRODUCTION

In the world of high-energy physics, gauge field theories
seem to play a very special role. They are thought to
describe basic interactions among elémentary particles.
Their appeal has increased since it was verified that elec-
troweak interactions appear to be described by a pertur-
bative gauge field theory. However, the complexity of a
theory like the standard model, due both to the large num-
ber of elementary fields and to a variety of interactions,
makes unpractical almost every calculation beyond tree
level since the number of diagrams involved becomes very
large. This problem wili be even more acute if a supersym-
metric field theory becomes necessary. In order to enlarge
the class of feasible calculations, critical in precise
measurements at high energy, automatic methods must be
developed. Some recent progress has been done by Boos er
al. [ 1], who have designed a computer program to compute
tree level processes characteristics in gauge theories.

The subject of automatic generation of Feynman
diagrams has been approached by several authors in the last
two decades [2-5]. However, none of the available com-
puter programs is entirely satisfactory. Most of them are
simply restricted to a particular interaction {QED), Until
recently, the most interesting program was FRENEY [3],
which accepts a mixture of interactions and still performs
the elimination of equivalent diagrams. Nonetheless,
obtaining all diagrams for a given process is not completely
automatic: several runs are needed, depending on the
number of possibilities of combining interactions {and this
must be done by hand).

After the completion of this work 1 have learned about a
recent paper by Kiiblbeck ez a/. [ 6] that addresses the same

problem. However, the following shouild be noted: their
algorithm depends mainly on two techniques (recursive
generation of diagrams and comparison of stored diagrams)
that were deliberately avoided in the present paper; typical
execution times are large and so only a restricted class of
physical processes may be approached by their computer
program; the enumeration issue is dealt with in a far less
complete way.

This paper is organized as follows: Section 2 describes an
algorithm for automatic graph generation in any pertur-
bative field theory, except for the elimination of equivalent
graphs that is described in Section 3. In Section 4 a number
of tests that may be applied to any such computer program
are presented. A computer program has been developed to
check for the feasibility of this approach; a few of its charac-
teristics and an analysis of its performance are given in
Section 5. Appendix A contains most enumeration results
while Appendix B is devoted to special topics: one-particle
irreducible diagrams and diagrams without tadpoles.

2. THE METHOD

Although the present approach relies directly on graph
theory not all the graph theory concepts used throughout
this paper will be defined in detail; see, for instance, the
book by Harray [ 7] for complementary information,

The basic structures here considered are the so-called
pseudographs: these consist of a set of nodes (vertices) that
may be joined by edges (lines); muitiple edges and loops
(edges that join a node to itself) are possible. To avoid con-
fusion with the field theory terminology, the word isop will
be italicized whenever used in the context of graph theory.
What physicists call the number of loops is known to
mathematicians as the cyclomatic number. Define a bond as
a set of all the edges adjacent to exactly the same nodes.

Every pseudograph may be represented by its adjacency
matrix, in which a certain entry a; , denotes the number of
edges joining nodes / and j. The valency of a node (in the
literature, the designation wvalency is often replaced by
degree) is the number of lines adjacent to it (loops counting
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twice). If a pseudograph has exactly #, nodes of valency 1,
n, nodes of valency 2,..., n, nodes of valency k, one says it
has (node valency) partition (n,, n,, .., #;); since for our
purposes n, will be always zero, it will be omitted in the
following,

There is a direct equivalence between a pseudograph and
the underlying topalogy of a Feynman diagram: an external
particle may be associated with a node of valency 1 (or
endnode) and an interaction vertex with a node of higher
valency, usually 3 or 4.

A Feynman diagram is a more complex structure than a
pseudograph: first, there may be distinct fields, and thus the
need to assign different colours to its edges; second, some
particles may be different from their antiparticles, forcing us
to use directed edges to distinguish between the two
“charge” flows; third, the external particles are considered
as distinguishable so as to draw all diagrams, and thus all
endnodes must be labelled. The word colouring will be used
in a way that is not consistent with the usual terminology in
graph theory: in this paper it will mean attaching (possibly
directed) propagators to the pseudograph edges. In this
combinatorial approach propagators are represented by
ordered pairs of conjugated fields ( p, p); for fields that are
not self-conjugate (p# ) an orientation is automatically
assigned to a propagator. In turn, interaction vertices may
be represented by sets of fields {p,, py, ... p,} With n 2 3;
this defines the way propagators can meet at the nodes.

The algorithm strategy is divided into the following steps
(except for the graph elimination part):

1. generation of the connected unlabelled pseudographs
whose nodes have valencies allowed by the given field
theory (1, 3, and 4 for a gauge field theory); the number
of such nodes is determined by the number of external
particles and the order of perturbation theory

2. generation of the connected pseudographs with all
endnodes labelled (for each pseudograph obtained in step 1
one labels the endnodes in all possible ways)

3. colouring each labelled pseudograph obtained in step
2 in all ways compatible with the vertex rules; this means
that one associates a {possibly directed) propagator to
each edge such that at every node one obtains a possible
interaction vertex. Note that at this point the entire graph is
effectively labelled.

The gencration of the connected pseudographs will
not be described in detail. In general terms, it consists of
constructing all adjacency matrices that have a given
node partition. When representing a pseudograph by its
adjacency matrix one is effectively labelling all nodes. So, for
practical matters, a set of unlabelied (pseudo)graphs is in
fact a set of labelled (pseudo)graphs no two of which have
similar adjacency matrices (matrices that may be trans-
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formed into one another by permuting nodes). Care has
to be taken in order not to generate similar matrices. An
orderly type algorithm has been chosen so that no
comparison with previously generated graphs is needed.
Reference [8] describes a possible algorithm and contains a
list of relevant papers; although this material is devoted
to graphs it is a simple matter to extend it to the case of
pseudographs.

3. SYMMETRY

In the method just described, nontrivial symmetries will
inevitably lead to the generation of equivalent Feynman
diagrams during the labelling and colouring procedures.
However, it is desirable that one selects only a single
diagram (the “representative” diagram) out of a class of
equivalent diagrams. The elimination procedure that was
adopted relies on the construction of the symmetry
(automorphism} group of the underlying pseudograph. The
following symmetry groups are used:

e [5G}, the point symmetry group of the pseudograph
G, which consists of the node permutations for which the
adjacency matrix is invariant

« [,(G), the subgroup of I, that leaves the endnodes
fixed

e I'p(G), the subgroup of I', for which a certain
Feynman graph Fis invariant; it is assumed that G is the
graph topology of F.

Symmetries involving edge permutations are aiso possible,
and each such symmetry may be obtained by a composition
of the following operations:

» permutation of edges within each bond (if there are m
edges this gives a local symmetry group S,,)

« permutation of bonds together with the induced
permutation of nodes; it is important to note that for a con-
nected pseudograph with » nodes, this group is isomorphic
to I, if # > 2 (this follows trivially from a result obtained by
Sabidussi [9]).

A total order relation < will be needed below (any
properly defined relation < will do). The nodes of a
pseudograph, the edges within ecach bond, and the fields are
assumed to be ordered according to <; n-tuples and higher
dimensional structures can be ordered in the usual way: for
example, given two n-tuples (ry, 5, .., i) and (s, 54, .., 55)
one writes v <s if there is an index j for which r;<s; and
r;=s;forall i <

After a given pseudograph and its point symmetry group
I'; have been obtained, the endnodes are given a label e,
i=1,2, .,n,, to denote which external particle will be
mapped to cach such node. However, as some of these
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possibilities might be equivalent, an elimination criterion is
defined as follows: given a label e obtain, for all permuta-
tions P p, the permuted labels e.; a given labelling is
dicarded if and only if e, < e for some P, that is, unless e is
the “minimum iabel” (according to <),

At the last step one must decide whether to keep or reject
a given Feynman graph. Two symmetry sources may then
yield equivalent Feynman graphs: the first possibility is that
there may be foops or multiple edges, and the other is that
I, might not be the identity group. The former case is
overcome in the following way:

« if there are m edges joining nodes v; and v;, where
v;<v;, then one demands (see Fig. 1} p, <p, < --- <p,,

» if there are m loops at node v, one requires (see Fig. 1)
pixprand pp;y, foralli

The latter possibility is dealt with a variation of the
method used before: build any structure X(F), which may
be one-dimensional, two-dimensional, ..., but capable of
univocally defining a Feynman graph F. For example, this
structure may consist of a list of the propagators attached to
every edge, in a specified order. Under the action of any per-
mutation P& I, Ftransforms into an equivalent graph Fp,
represented by X(F,). A given Feynman graph Fis retained
iff X{(F)<X X(Fp)forall Per,.

The computation of the topological symmetry factor is
also possible and quite straightforward in this scheme. This
symmetry factor is always the reciprocal of an integer {call
it the symmetry number of the Feynman diagram) that may
be abtained by the combined multiplication of the following
factors:

« for each set of m identical propagators within the same
bond a lecal factor m! uniess the propagators are undirected
lpops (the Tactor is then (2m)!!)

» a single global factor |Ig|.

(pl 151)
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FIG. 1. Selection rules in the case of loops and multiple edges. The
propagators are represented by ordered pairs of conjugated felds (p, 5);
assume that the particle p, moves from v, to ¥; (or equivailently, that g,
moves in the opposite direction}. On the left, only the edge permutation
symmetry must be broken. The presence of foops {right) requires extra
conditions to break the loop reversal symmetry (that is, inverting the
propagators).
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The symmetry number is, clearly, the order of the residual
line symmetry group if one includes foop reversal as an
acceptable operation (for a Feynman diagram foop reversal
may be defined as the inversion of the associated
propagator).

4, TESTING

A completely general set of checks is clearly not possible.
Nonetheless, you may find below a number of fairly
stringent tests. Nearly all the calculations involved in this
section were performed by different REDUCE [10]
programs. Most of the results are given in Table | and in the
Appendix.

In the first place, one should check whether all distinct
graph topologies are indeed generated; to this purpose the
number of connected pseudographs {all nodes unlabelled)
has been computed {see Table [). The number of possibly
disconnected unlabelled pseudographs with partition
(ny, n3, my}is [11]

Pramne — N{Z(S,,IES:] X Snz[S3]

X 8p[Sa1)* Z(S,[S2 ]}, {1
where S, is the symmetric group of degree » and
{=(n, +3n;44n,)/2 is the number of edges. Z{H) denotes
the cycle-index of the permutation group H; the direct
preduct and the composition of two groups H, and H,
are denoted by H,xH, and H [H,], respectively;
N{Z(H)* Z(H,)} stands for the number of graphs
obtained according to the superposition theorem [ 1 ].

If these pscudographs are required to be connected, their
numbers p™™™ may be computed using the relation
between the total and the connected counting series for a
certain type of graphs [127]. The results are given in Table L.
The following truncation has been used:

n L7

n,+2n, €9

(2)
no+RyF2n, €12,

These bounds were chosen in accordance with the input
range for the computer program (see conditions (16)
below).

It is also possible to compute such numbers when some
{or all) classes of nodes are labeiled; in the case of interest
here, the coefficients of the counting series of all graphs
are [11]

P?'"Jn“:N{Z(Enl[Sl] x Sna[SE‘]

x 8, [5.1) * Z(S,[ S 1)}, (3)
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TABLE [

Numbers of Various Kinds of Connected Graphs:
Pseudographs (p), Pseudographs with Labelled Endnodes (p,)
and Digraphs of Type &, (See Eqgs.(11) and (12)) with Given
Partition

(#y, 1y, 114) P Py d, (), ny, 0} P 2 d,
0,0, 1) 1 1 1 (330D 6 117 1748
0,0,2) 2 2 5 (3,3,2) 362 1318 60,204
(0,0, 3) 4 4 23 (3,3,3) 331213,142 1,937,184
(0,0, 4 16 16 179 (3,50} 19 58 1836
(0,2,0) 2 2 1 (351 427 1621 156070
0,2, 1) 5 5 3352 6307 28,471 8,950,140
(0,2,2) 2 2 45 (3,1,0) 147 535 107,060
(0,2, 3) g% 88 6435 (3, 7.1} 522921968 14,398,448
(0, 4.0} 5 5 0 (39,0) 1326 5427 7,335,800
(0, 4,1) 30 30 1261 {4,0,0) 0 0 0
{0,4.2) 28 228 36,040 {4,0,1) ] 1 1
(0, 6.0) 1717 870 (4.0,2) 2 7 17
0,6, 1 193 193 61,020 (4,0,3) g 42 291
(0, 8.0 717l 31,052 (4,0.4) 37 255 5293
(1,1, 0} 5 1 1 {4.2,0) 103 &
(1,1, 1) 3 3 9 (4,2, 1) g 53 280
{(1.1.2) 0 W 83 4.2.2) 73 598 5094
(1.1,3) 39 39 1023 (4,2,3) 575 5784 269828
(1,1,4) 174 174 14941 (4,4.0) . & 39 444
(1,3,0) 3 3 16 (4.4, 1) 114 1109 36,028
(1,3, 1) 4 M 421 (4,4,2) 1698 19.223 1,927,682
(1.3.2) 17217 10,055 (4.6,0) 50 465 31,992
(1,3, 3} 1211 1211 244378 (4.6, 1} 1582 19,164 4,052,368
(1,50 12 12 376 | (4,8,0) 475 5625 2,490,264
(1,5 1) 195 193 22922 (51,0), 0 0 0
(L5 2390 2390 1,016,836 (5, 1.1} 110 20
(1,7.0) 67 67 14,116 (5, 1.2} 8 145 760
(1,7.1) 1745 1745 1490054 (5.1, 59 1485 22,620
(1.9.0) 441 441 697296 (5,3, ) 115 60
(2.0,0) 1 1 1 (53 1) 19 505 5620
(2,0, 1) 1 1 1 (5.3.2) 278 9250 302,060
(20,2} 3 3 9 (5350 0 297 6984
(2,03 8 1 83 (55 1) 32912,905 892,640
(2,0, 4} 0 39 023 (5 7.06) 114 4725 688,080
(2,2, 2 2 5 {6,0,0) ) ) 0
2,2.1) 12 16 107 (6,0.1) 0 0 0
(2,2.2) 72105 2128 (6,0,2) 1 1o 20
(2,2,3) 431 689 43,392 (6,0, 3) 4 145 760
(2,4,0) ¢ 10 138 (6,2,0) 0 0 0
(2,4.1) 11 170 7206 (6,2, 1) 2105 420
{2,4,2) 1229 2004 279348 1 {6,2,2) 31 2615 28,820
(2.6, 0) 49 66 5606  (6,4.0) 2105 840
(2,6, 1) P12 1833 526,228 . (6,4, 1) 47 5835 134,640
(2,8,0) 338 511 293080 , (6,6.0) 21 2865 138,000
{3.1,0) 1 1 1 (LW 0 0 0
(3. 4,1} 3 7 17 (7.4, 1} 0 0 0
(3.1,2 15 42 21 (7.1,2) 2 280 1120
(3.1, 78 255 5203 (7,3,0) 0 0 0
(3, 1, 4} 438 1592 105069 (7.3, 1) 4 1260 10,080
(3.3,0) 3 7 38 (7,50 2 945 15.120

where E,, is the identity group of permutations on » objects.
A refation between the connected and total counting series
also exists in this situation [13]; the explicit formula is

[T (1= xpxmxp =A™

unlabelled
mn3ng
pl n14.03 .14
I exP( a1 X3t

labelled 1-

=l 3Ty
P

=1+ ¥
nyag, =0
m AR+ >0

X7, (4)
nf
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which combines is an elegant way the formulas valid either
when all nodes are labelled or when all nodes are unlabelled.
The product called labelled is over all indices that produce
a labelled graph (that is, 7, %0} while in the other product
all indices for which no labelled nodes appear must be con-
sidered (n, =0). This relation enabled us to compute the
numbers p'"™"™, also listed in Table 1. Some of these values
(the ones that enumerate trees) may be cross-checked at
once: as it is well known, the number of trees with partition
(#=ns+2n,+2, n,y, n,) and of all nodes labelled is given
by

wyma (213 4 3ng)!
T‘L3 = 2!5'133!;14 (5)
If only the endnodes are labelled, the number is instead
13»4
T = . 6
! 'BER ()

This is a consequence of the fact that I, (G) reduces to the
identity group when G is a tree.

The previous tests cover steps (1) and {2). For the last
step some more refined tests are indispensable. A few chosen
lagrangians will now be considered, and in each case the
number of diagrams (and/or a related quantity, to be
explained in the following) for various physical processes
will be given. These results should then be reproduced by an
operational computer program.

Itzykson and Zuber [14] have developed a technique to
enumerate Feynman diagrams, based on a reduction to a
zero-dimensional field theory (see also Ref. [15]), which [
have adopted. The correlation functions of the zero-
dimensional field theory are power series (with rational
coefficients} of the coupling constant g; the coefficient of the
monemial in g™ is sum of the (topological) symmetry
factors of all Feynman diagrams of order m contributing to
that correlation function. Only for situations where sym-
metry is absent (I mean when the symmetry factor is always
1, as in QED) does one obtain the real number of diagrams.
We will call this weighted enumeration. It should be clear
that, unless otherwisc stated, all unrenormalized diagrams
(including tadpoles, for example) are counted and
generated.

As a first example let us consider a single seli-conjugate
field a with cubic and quartic interaction terms. The
zero-dimensional theory reads

I
Si=—sd+iad el at (7

The first few terms of chosen correlation functions have
been computed. The real number of diagrams may be
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computed directly from Table I; the p-loop #n-point
function has

[k/2]
Z pflllskv 2rt4,ny

ng=0

(8)

diagrams, where k=n, — 2+ 2p. Both results are listed in
Appendix A.

As an illustration consider the two-loop tadpole
diagrams, drawn in Fig. 2. These are diagrams of order g°,
so their number is p}*®+ p)'' =343 and the sum of the
symmetry factors is 3 according to (Ad4)and (A5). The sym-
metry numbers have been decomposed into a product of a
local and a global piece, as discussed in the previous section,

One could also consider scalar theories with a single
interaction term, either cubic or quartic. Although this has
been done the complete results are not presented since in
those cases one has nothing but a subset of the diagrams of
the theory with both couplings. However, it should be clear
that for those theories one may also compute the real
number of diagrams from Table 1.

A somewhat more complex case is given by the action

85 = —aﬁ+§(a3 +3a%+ 3ad® + @)
g2
+52 (a* + 4a°G + 6a%a* + 4ad’ + a*). (9)

It describes a “charged” field a with all possible cubic and
quartic self-interaction terms. We shall not be concerned
about “charge” nonconservation nor about other conserva-
tion laws; the only aim is to find diagrams that satisfy cer-
tain matching rules. This situation is already complex from

s=2.2 s=6.1 s=4.1
s=4-1 s=4-1 s=4.2

FIG. 2. Connected iwo-loop tadpole diagrams in the scalar theory §,.
Symmetry numbers are given as a product of a local {left) and a global part
(right), as defined in the text. The number of diagrams is p}>° + p}'* =6 and
the sum of the symmetry factors is 31, according to (A4} and (AS). Only the
diagrams in the top row are 1P-I and the sum of the symmetry factors is
% as given in (B22).
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the field theory point of view (there are nine types of ver-
tices), although there is only one field. However, from the
mathematical point of view, it is quite simple: the Feynman
graphs are all the digraphs that may be drawn with the
usual valency and labeiling constraints. It will be shown
below how to enumerate the Feynman diagrams in. this
theory.

Let D7 be the number of possibly disconnected
digraphs with labelled endnodes; they may be evaluated
as[11]

D;lglngm — N{Z(E’”[S!] x Snj[Sj]

x Sn[Sa1)* Z(S, [T} (10)

It has been described above how to compute the number of
connected digraphs of this type 47'™™ (see Eq. (4)). These
numbers are not the ones given by the diagram generator
since not all constraints have been taken into account. The
number 47" may be obtained by adding together the
number of diagrams contributing to all n, +1 Green
functions {a*a@™ ~*) with n, legs and including, for each of
these functions, a factor n/(n, — k){/k! to account for all
the different ways of labelling the legs.

An additional symmetry will simplify things. In the first
place one may note immediately that Green functions differ-
ing only by the labelling of their legs must have the same
number of diagrams. Now consider the two sets of Feynman
graphs obtained from the Green functions {a*@" *) and
Lam™gm —my after selecting only the ones with #, cubic inter-
actions and n, quartic interactions. If one takes the first set
of diagrams and, in a systematic way, one replaces k —m
legs of type a (assume & > m) by k — m legs of type a (this is
possible since all interaction vertices exist), one will obtain
the other set of diagrams; and since the legs are labeiled, this
procedure is one-to-one. It has been shown that all the 2™
possibilities considered above lead to the same number of
digraphs and thus the expected number of Feynman
diagrams with n, legs, n; cubic vertices, and », quartic
vertices is

Japmng __ = gmnime
dnimm — —_ gmmm

2n1 1 (11}

The only exception occurs when the diagrams have no inter-
action vertices, that is, for the tree level 2-point correlation
functions, since only {aza} is non-vanishing. In that case
one has

3200 200

di% = 1d3®, (12)
An equation similar to (8) also holds here, and in this way
one obtains the counting series equations {A8).
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The simpler action

g g
S’2=—a&+—(a3+&3)+ﬂ(a4+&4) (13)

6

gives Feynman diagrams in a one to one correspondence
with bichromatic graphs. Again, these diagrams are a subset
of those for S, and so no numerical evaluation has been
attempted.

The next situation involves three neutral scalars with a
single cubic interaction

S,=—1a"—1b*— 3’ + gabe. (14)

Here the Feynman graphs are graphs with labelled
endnodes whose edges are coloured with three colours in
such a way that at each interaction node all adjacent lines
have different colours. This example will test the colouring
algorithm ability to deal with different particles.

The last exampie, a scalar QED type theory, combines all
features discussed above: different particles, several types of
couplings, directed and undirected propagators. The action
reads

L, [ ;& L g 202
Sy=—ga'—bb+ gabh+ S abb+ £ 572 (15)

It may be noticed that in all the examples presented cubic
vertices have strength g and quartic vertices strength g°. In
this way all counting series obtatned, which are power series
in the coupling constant, will be in agreement with the loop
expansion.

Other examples could be easily imagined, but 1 believe
the ones just presented already provide a serious check for
any computer program whose algorithm is interaction inde-
pendent. The tests cover all possible features: connected-
ness, node labelling, edge directing, and edge colouring. For
very complex situations like the standard model or the
minimal supersymmetric model a computation of this type
would be prohibitive. In those cases it can be argued that:
steps 1 and 2 are the same whatever the lagrangian, and they
have passed several stringent tests; no type of interaction is
singled out by the colouring algorithm, which has given the
right answer for various types and numbers of vertices, For
these reasons, this algorithm seems to provide a more
systematic approach to the subject.

As previous authors have devoted their attention to
QED, 1 have also dealt with that case (which is a special
case of scalar QED in the sense that the diagrams involved
are a subset of those for scalar QED). Subroutines for the
elimination of 1P reducible graphs and graphs excluded by
Furry’s theorem have been developed. The well-known
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numbers for the irreducible vertex I, the vacuum polari-
zation II, and the electron self-energy X' have been
reproduced.

5. THE COMPUTER PROGRAM

In its present form, the computer program performs a
combinatorial exercise only. It does not generate symbolic
expressions for the amplitudes corresponding to the
generated diagrams; neither 1s there a graphical output at
the moment.

The program generates all Feynman diagrams con-
tributing to a given process and for a chosen loop order.
This implies that there can be no bilinear interaction terms
in the tree level lagrangian (only the properly diagonalized
mass cigenstates can be used). At present it is also required
that the interaction terms are either cubic or quartic in the
fields, which is satisfied by gauge field theories. There are
also some restrictions on the number of external particles n,
and the loop order p accepted as input. The following
bounds are likely to cover most practical situations:

(16)

In principle it is possible to use larger values by increasing
array dimensions and updating a few parameters; in
practice, if ever needed, it might take too long to run. Just
remember that the number of diagrams usually grows in a
faster than exponential way with both p and »n,. The
feasibility of this algorithm also depends on the fact that the

P1
1 4

>y

P q
— 3
[ AVAVAY

[#2,8=1]
le-,p1,1]
[4,1,4]
[e-,5,4]

(,p2,2]
[e-,2,5]

[G‘,q1.33
[e-,4,3]

[e-,1,2]
[4,3,5]

FIG. 3. Example of a Feynman diagram in QED contributing to the
electron anomalous magnetic moment, and the way it is written on the out-
put file. External particles are given a label p; (incoming) or ¢; (outgoing}.
An auxiliary numbering of the interaction vertices is used. For example,
[e-, 4, 3] means that there is an electron propagator directed from vertex
4 to vertex 3, and [A, p2,2] stands for an incoming photon with
“4-momentum” p, that flows into vertex 2. The first line contains the
number of the diagram as generated by the program (left) and its symmetry
number (right).
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TABLE I1

Execution Time on a VAX-8550 for Processes in
the Scalar Theory S,

Green's function Loop order N tis) Ny 1, (5)
{ay 4 471 2
La?) 4 5676 47 1011 8
<u*y 3 3729 4 619 2
<aty 4 70,600 349 11,388 62
{a*y 2 2214 2
Laty 3 50,051 45 6166 12
{a’y 2 28,365 17 2230 3
(a®y 1 11,460 9 390
) 0 2483 5

Note. Values less than 1 s have been omitted. N is the number of the
unrenormalized diagrams and N, is the number of one-particle irreducible
diagrams; ¢ and 1, denote execution time (in seconds). The values N, have
not been computed theoretically, unlike the weighted values in (B22).

order of I'p is fairly small for connected graphs (|I'p| <72
if inequalities (16) are satisfied), so that the full point
symrmetry group may be easily stored in the memory.

Two input files are used; one contains a simplified version
of the lagrangian (only the combinatorial part) and the
other describes the process, the loop order, and a few
options, like the elimination of diagrams with tadpole
insertions or one-particie reducible graphs. There is also an
option that will Iist all Feynman graphs in a codified form.
An example is given in Fig. 3.

To have an idea of the computer program performance
(in its present form), Table Il lists the CPU-time {on a
VAX-8550) needed to generate the diagrams in the scalar
theory S, . Values listed include the computation of the sym-
metry factors and some internal checks. Values omitted are
less than 1 s. I expect that a refined algorithm may improve
the CPU-time required for pseudograph generation.

For theorics with a larger number of vertices the number
of diagrams may be much larger than in theory S, and
typically one must add 10~* to 10 * s per diagram to the
CPU-time just quoted. For example, the generation of all
32,726,641 distinct Feynman diagrams for the four-loop
three-point function in theory S, takes a little over 2.5 h. As
an example of a sitvation more close to reality, take the
process ete” — W* W~ in the standard model at one
loop. With 154 interaction vertices (all Higgs couplings
were retained but gluons were discarded and quarks were
colourless) in the Feynman—"t Hooft gauge, 2672 diagrams
were generated in 0.9 s.

6. CONCLUDING REMARKS

A general algorithm for automatic Feynman graph
generation has been described; this was implemented in a
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FORTRAN computer program. A simplified flow chart is
shown in Fig. 4. The elimination of equivalent diagrams is
complete. The algorithm works at its best when there are
many Feynman graphs with the same underlying topology;
this will be the case in higher loop expansion in usual gauge
field theories (e.g., the standard meodel or its minimal
supersymmetric extension).

Another advantage of this method is the following: the
computer program requires constant (=100 Kbytes)
working space, regardiess of the number of diagrams
involved. This is because the algorithm was specifically
designed to generate a single graph per step, and the
elimination procedures can apply without reference to
previously generated graphs. Moreover, the algorithm is
not recursive {that is, it does not generate larger diagrams
from a list of smaller diagrams). Thus no large diagram
storage is necessary for generation purposes.

This algorithm generates all unrenormalized diagrams.
After a renormalization procedure is applied to a given field

START

pseudograph

next

labelling

next

colouting

FIG. 4. Simplified algeorithm {low chart showing a fully nested
architecture. In each module next structure the program looks lor a repre-
sentative structure that has not been generated before (ne comparison with
previously generated structures is done, though). The inner loop, more
precisely the dashed line, is the place where the Feynman diagrams may be
counted and displayed (among other things).
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theory, certain classes of diagrams are no longer considered.
This requires that supplementary elimination routines must
be written (in fact, a few of them are available); on the other
hand, the algorithm can be easily adapted to different renor-
malization schemes. A copy of this program is available on
request.

APPENDIX A: COUNTING SERIES OF SELECTED
CORRELATION FUNCTIONS

In Section 4 the problem of testing an automatic Feyn-
man diagram generator was addressed. Several chosen field
theories. were considered, and in each case the (weighted
and/or exact) number of diagrams of selected correlation
functions has been computed for low orders of perturbation
theory. In this appendix are listed the first few terms of those
counting series.

Let G(X} be the connected correlation function (X
given by the zero-dimensionai method [14], whose coef-
ficients give the sum of the Feynman diagram symmetry
factors. In turn, N(X) stands for the counting series of the
same correlation function, obtained from combinatorial
graph theory methods [11]. All the numbers listed below,
whose computation relies on theoretical methods, have
been reproduced by the computer program. In all cases only
connected diagrams were considered.

The technique used to compute the correlation functions
is as follows [14] (consider, for instance, the theory §)).
Start with the functional generator

Z(J)=J£exp($l + Ja) (A1)

N

and compute the complete Green’s functions by expanding
in the interaction terms up to a desired order

o0 1 g k gl el
- L amls) G)
J=0  km—o ¥ P

n+3k+4m€*02/2. (A?.)

_a!lZ
g

d
Ew
A
Then the connected Green’s functions may be obtained
from

Gla")y= (an log Z)

aJ”

(A3)

J=0

This gives
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Gla)y=38+ 5%+ &+ 5R7¢ + -

G(az):l+%g2+"'3—5g4+%g6+8°9‘?9g8+

G(a3}=g+%g3+%g5+444g7'7g7+523§f85g9+

Gla*)=4g> + 57g* 4+ 55T g+ 102 g5 ¢ .. (Ad)
Gla®)=25g" + 152>+ B3B8 g7+ ..

G(a®)=220g* +7230g% + - ..

G(a’)=2485g" + ...

while for the exact enumeration (see (8) and Table I) one
obtains

Nia)=g+6g’ +46g° +471g"+ .-
N(a®)=1+3g"+ 29g* +351g° + 5076g" + -
N{a*)= g+ 14g° +217¢° + 37298" + 70,600¢° + ---
N(a*)=4g> +99g" + 2214g° + 50,051g% + .-
N(a®)=25g> +947g5 + 28.365¢" + ---
N(a®)=220g" + 11,4608° + ---

N{a"y=2485g° + ---.

(A3)

The action 5, has an intrinsic symmetry that may be used
to relate correlation functions with the same number of legs:

G(a'@)=G(a **) +5,.8,,. (A6)

Therefore it is sufficient to list the correlation functions of
the form {a">:

G(a)=g+4},—6g3+is3ﬁg5+2539'552g7+
G(a2)=5g2+178g4+22,;16 g6+642;984 gS+

G(a3)=g+46g3+5¥ 5+6?63960g7+ 1921;8]60g9+

G(a*)=Tg> + 634g* 4 59,3486 4 18806 o8 ... (A7)
G(a’)=80g> + 11,624g° + 2430320 o7 .
G(a®) = 1280g* + 266,120g% + .-
Gla’)=26,320g°+ ---.
From Table [ one obtains

N(a)= g +25¢° + 880g> +48,116¢" + -

N(a®)=6g°> 4+ 254g* + 15,023g% + 1,144 071g% + ...
N(a®)= g+ 55¢° + 3875¢° + 328,717¢”

+32,726,641g° + ..
(A8)

N{a*)=Tg?+ 741g* + 77,405¢% + 8,745,435¢% + ...
N(a®) = 80g® + 13,364¢° + 1,905,400g" + .-
N(a®)=1280g* + 302,220¢% + -
N(a')=26,320¢g"+ ---.
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Next follow the expansions in theory S5, where weighted
and exact enumerations coincide. The list includes only
non-vanishing and symmetry unrelated counting series:

G(a®)=1+ g*+4g" +25¢° + 208¢* + -
Glabcy = g+ 4g> 4 25g° + 2087 + 2146g° + - -
Gla’h?)=2g" + 16g* + 150¢° + 1664g® + - .-
Gla*)=6g* +84g% + 1116g% + ...
Gla’bc)=6g> +84g° + 111687 + .-
G{a*h*c*) = 32g" +636g° + .-
Gla*h?)=24g* + 504g® + ..
G{a®)=120g%+ .-
G(a*h’c) =180g° + - -
G(a’he) =120+ ---.

(A9)

The final listing is for the scalar QED type theory, for which
the exact enumeration is missing:

Gla)=g+5 &+ g+ 77 g"+ -
G(a2)=1+232+%g4+82£g6+75343g5+
G(bb

) 149 4
G(03)=5g3+129g5+ﬁ:‘§‘ig7+4_1_§‘,‘i§g9+

T+3g7+1P " + 42 g0+ 20 -

Il

Glabb)= g + 14g” + 1417 g5 4 1303 o7 4 2450261 09 | .
Gla*y=21g" + 888g5 + 123371 g8 .
Ga?bb)=13g? + T7g" + 8382 o6 4 220399 o8 |
GP°B)=3g> + 1 g4 22 gt L6fsLgh oy
G{a®) = 114g° + 730587 + ...
G(a’bb)=12g° + 525g° + 19,956g" + ---
Glab®h?)=16g> + 675g% + L2857 4 .,
G(a®)=T780g%+ ---
G(a*bb) = 66g* + 4305¢° + - -
G(a*h*h*) = 108g" + 6392¢° + ...
G(h°h*)=99g" 12228 g6 4 ..
G(a’bb) =450g° + ---
G(a’p*b*)=876g° + - -
G(ab*p*y=927g°+ ---

{A10})

APPENDIX B: THE ENUMERATION OF SPECIAL
TYPES OF DIAGRAMS

One-particie irreducible (1P-I) diagrams are the ones
that do not become disconnected by cutting a single internal
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line. Since this characterization is purely topological, it may
be done during step 1 of the program. This also means
it is enough to consider the scalar theory of a single self-
interacting self-conjugate field to do a complete test of the
algorithm that identifies 1P-I graphs.

By using the Dyson-Schwinger equations, Cvitanovic er
al. [157] have developed a technique that produces differen-
tial equations to be satisfied by the various »-point functions
{also for 1P-1 functions). Nevertheless T have used another
technique, more suitable for automated computation; the
(algebraic) equations so obtained are valid for a whole class
of models {they are satislied for any number of self-
interaction terms of the scalar [ield ). This method is not very
efficient for very high orders of perturbation theory, neither
it is suited for asymptotic analysis, but it is very easy to
implement and it works fairly well for smalt orders (say, up
to g'*), which is the case of interest here.

Consider the functional generators W and I, of
connected and 1P-I Green functions,
o
W
W=y —=J"
(/) EO o
. (Bi1)
_ Y "
o= £ e

which are related by a Legendre transformation [167]

or 0w

I =WiJy—J¢ =—— .
(@)= W)—Jo,  J=—to, 5 B
A direct substitution leads to
o W aF ”n al"
reg)= S @ —. B1
(®) Eomz( arp) "% (B13)

This nonlinear equation can be given a formal solution.
Since, due the super-exponential growth of the coefficients,
we are dealing with formal series anyway, this must be the
real solution. Let

< {—7)
Hn = Z wm+i_-,_l
i=0 B

(B14)

and assume for the moment that the 1P-I tadpole v, is
known. Then the 1P-I functions y,, may be computed as

Yo=Ho

(B15
y2=—1/p, )
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and, form= 1,

'Pm+2=nu'272"171 Z
()
(_l)s—m—ls! u%m_"ﬂflﬂiz'”##ﬁz
J 20 U3 (g D)

(B16)

The summation extends over all partitions of
m=j+2j,+ - +mj, and for each partition we define
S=2 w3+ - +(m+ 1)),

The 1P-] tadpole 7, is obtained by solving the equation

w
u,slvl—w2y1+2—:yf—---:0, (B17)

which can be done in two ways. The first one is to expand
y, in powers of g and solving iteratively for the coefficients.
This gives a unique solution since w, # 0 when g=0. The
second process is to expand in powers of w, /w,; writing y,
as

za
n=2 g (B18)
k=1""
where 5, =w,,/w, one obtains a, =1 and
— 1) st Sy d2 ik
ak+1=z ( ) s '73”4 '1.‘(-{-2 (Blg)

G2 3 (k4 1R
for k= 1; the summation extends over all partitions of k and

s 1s defined as before. Note the similarity with (B16).
Here are some explicit relations determined by {B16)

-
y=
IS
— 342
4=ﬂ2ﬂ4 - i (B20)
Ha
_H s~ 10u, s g+ 1503
5 7
#a
and (B19)
a2 =13
ay=—n4+3n3
(B21)

ay=Hs— 10, + 15'?3
as=—tg+ 159305+ 10n; — 1054413 + 10573,

P. NOGUEIRA

This procedure leads to the following 1P-T correlation
functions (in theory §,):

n=tg+ig’+¥+5F’+ -
vo=—l+g+hg'+F g+ B3P 5+ -
=g+ T BR g B
Ve=g + 3 gt + IRt WEB B
ys=57g° + 1660g" + ---

(B22)

7e=390g"+ ---
'})_,,=Og5+

Next we return to the quantities y,, defined in (B14),
They enumerate diagrams without tadpole subdiagrams as
it may be realized. A straightforward calculation gives

=0
pa=1+g+ 3t + 305+ Pt
My=g+ 4 g’ +46g% +524g7 4 3977 o9 ..

p=dg B R R (B)

Hs= 25 g B
e =220g" + H3E g+ ...
Uy =2485¢"+ ...,

Let me point out that the power series expansions pre-
sented in this appendix (for example, the expansion of u,, in
powers of y,) are convergent in the sense that for computing
the exact coefficients up to order g™ only a finite number of
terms must be added. For instance, the first five terms in
(B18) reproduce ¥, up to g°.
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